![]() Method and apparatus for detecting mouldings in a package
专利摘要:
The invention relates to a method and a device for registering the presence of an ophthalmic moulding consisting of a biocompatible polymeric material, especially an ophthalmic lens, particularly a contact lens, in a package. The invention solves the problem through the use of an IR camera. Packages containing a moulding, especially a contact lens, have a change in their temperature distribution compared with a package without a contact lens. By evaluating the temperature difference, it is possible to determine whether or not there is a contact lens in a package. In particular, by using the detecting method according to the invention, one can determine whether there is a contact lens in the package directly after the filling procedure. 公开号:US20010009561A1 申请号:US09/725,405 申请日:2000-11-29 公开日:2001-07-26 发明作者:Roger Biel 申请人:Novartis AG; IPC主号:G01N25-72
专利说明:
[0001] The invention relates to a method and apparatus for registering the presence of a moulding consisting of a biocompatible polymeric material, especially an ophthalmic lens, particularly a contact lens, in a package. [0001] [0002] Mouldings consisting of a biocompatible polymeric material are usually placed in a package for storage and for transport. The packages in question are frequently so-called blister packages. A blister package consists of a plastic container, for example of polypropylene (PP), the top of which is sealed with film after the moulding has been placed in the plastic container. [0002] [0003] In particular, contact lenses that are produced in large unit numbers, for example disposable contact lenses, are sealed into blister packages. Such contact lenses are preferably manufactured by the so-called mould or full-mould process. In this process, the lenses are manufactured into their final shape between two moulds, so that there is no need to subsequently finish the surfaces of the lenses, nor to finish the edges. Mould processes are described for example in PCT application no. WO/87/04390 or in European patent application EP-A-0 367 513. [0003] [0004] To manufacture a contact lens, first of all a certain amount of the flowable starting material is placed in the female mould half. Afterwards, the mould is closed by placing the male mould half thereon. Normally, a surplus of starting material is used, so that, when the mould is closed, the excess amount is expelled into an overflow area adjacent to the outer mould cavity. The subsequent polymerisation or crosslinking of the starting material takes place by radiation with UV light, or by heat action, or by another non-thermal method. [0004] [0005] The contact lenses produced in this manner are moulded parts having little mechanical stability and a water content of more than 60% by weight. After manufacture, the lens is metrologically checked, then packaged and subjected to heat sterilisation at 121° C. in an autoclave. [0005] [0006] In U.S. Pat. No. 5,508,317, a new contact lens material is described, which is an important improvement in the chemistry of polymerisable starting materials for the manufacture of contact lenses. The patent discloses a water-soluble composition of a prepolymer, which is filled into the mould cavity and then crosslinked photochemically. Since the prepolymer has several crosslinkable groups, crosslinking is of particularly high quality, so that a finished lens of optical quality can be produced within a few seconds, without the necessity for subsequent extraction or finishing steps. Owing to the improved chemistry of the starting material as illustrated in the patent, contact lenses can be produced at considerably lower cost, so that in this way it is possible to produce disposable lenses. [0006] [0007] Optical components produced in series, e.g. contact lenses, have to be checked for faults such as scratches, shrinkage or edges that have broken away. The components recognised as faulty are then rejected. However, at the moment there is no provision for checking whether a package has actually been filled with a contact lens. Under certain circumstances, empty packages may appear, which are not noticed. The client then discovers the empty package and is of course annoyed. However, if empty packages are recognised by chance or by spot checks, then either the whole batch has to be rejected or all the contact lens packages have to undergo 100% manual checking. Both procedures involve substantial costs. [0007] [0008] The invention is therefore based on the problem of providing a testing method with which it is possible to detect, at low cost, whether a moulding, especially a contact lens, is actually present in the package. [0008] [0009] The invention solves this problem with the features indicated in claim [0009] 1. As far as further essential refinements are concerned, reference is made to the dependent claims. [0010] By measuring the temperature of a package, it is possible to establish the presence of mouldings in a package. Packages containing a moulding, especially a contact lens, have a characteristic change in their temperature compared with a package without a contact lens. By evaluating the temperature difference, it is possible to determine whether or not there is a contact lens in a package. In particular, by using the detecting method according to the invention, one can determine whether there is a contact lens in the package directly after the filling procedure. Further details and advantages of the invention may be seen from the description that follows and the drawing. In the drawing, [0010] [0011] FIG. 1 shows a schematic illustration of an embodiment of a checking device according to the invention; [0011] [0012] FIG. 2 shows a schematic illustration of a tool holder filled with packages. [0012] [0013] In FIG. 1, a checking device [0013] 1 according to the invention is illustrated. The checking device 1 is preferably integrated into a packaging appliance, not illustrated here, in such a way that it is possible to detect the presence of a contact lens 5 in the package during the production process. FIG. 1 shows a schematic illustration of five blister containers 2, arranged in series, of a packaging unit especially for contact lenses 5, which are transported continuously by the appliance on a tool holder 4 illustrated schematically in FIG. 2. Five blister containers 2 arranged in series form one blister strip 3. The blister containers 2 are joined together by a film strip not illustrated here, the outline of which corresponds to the contour of the top of the blister containers 2, since when the object to be packaged, preferably a contact lens 5, has been inserted, the film strip is heat-sealed to each blister container 2 individually. Prior to sealing the film, however, there is a provision according to the invention for checking whether each of the blister containers 2 contains a contact lens 5. [0014] The checking device [0014] 1 comprises an infrared line camera 6 with a line resolution of preferably 128 pixels. It is preferably a camera made by Dias GmbH. The camera 6 advantageously has a sensitivity range of 0°-80° C. with a resolution of 0.5-0.1 K, preferably 0.2 K. However, other IR sensors may also be used. Measurement is based on the effect that the contact lens 5 automatically cools through evaporation of the moisture adhering to the contact lens. If the contact lens 5 is placed in the package, this package is colder than one which does not contain a contact lens. This effect is detectable by a local temperature measurement. [0015] The camera [0015] 6 is preferably incorporated in the packaging appliance over the tool holders 4 which are arranged in series advantageously in five production lines 7 and can be conveyed on conveyor belts, so that the measuring range covers all five lines 7, not illustrated here. Of course, it may be possible to modify the number of conveyor belts and thus the production lines 7 in the packaging appliance. The repeat rate of the measurements in respect of a blister container is advantageously very high, so that the camera 6 is preferably in continuous operation. In this way, a high degree of certainty can be achieved in respect of the measurement results. The camera 6 is advantageously equipped with an integrated electronic evaluation means and all five production lines 7 can therefore be monitored in real time by the camera 6. Through an intersection point directly on the camera 6, the latter can be connected to the machine control of the packaging appliance. However, it is also conceivable for the evaluation signals from the camera to be passed directly to a PC control unit of the appliance. The software for control and evaluation of the camera allows a measuring line from the camera 6 to be subdivided into several zones that can be monitored separately. One zone division was advantageously undertaken in such a way that each production line 7 can be detected separately. In addition, advantageously each production line is again divided into two zones, whereby one of the two zones detects an area I of the blister container 2 with a contact lens 5 and the other zone detects an area II without a contact lens. These two zones are suitably separated from one another by a transition area in which measurements are not made. This is possible, since, in addition to the actual area where the contact lens 5 is received, the blister containers 2 have a relatively elongated gripping area. [0016] The results of measurement from both zones are then compared. In this way, a relative measurement is made, so that the system is relatively independent of external influences, such as room temperature. If the difference of the temperature measurement between the zone with the contact lens and the zone without the contact lens [0016] 5 gives a value of less than 1, this means that a contact lens is present in the package. A starting signal can be set at a certain value, which is sent to a metering element or to the machine control. This enables a counting of the contact lenses 5 for example. [0017] As is also evident from FIG. 2, the packaging appliance was advantageously equipped with a sensor [0017] 8, which detects when a tool holder 4 mounted with the blister containers 3 reaches the measuring area. The sensor 8 records when a tool holder 4 leaves and/or enters the measuring area. The sensor 8 may be designed for example as a light barrier; however, sensors operating capacitively or inductively are also possible. If the tool holder 4 has for example five blister containers, each holding one contact lens 5, then five contact lenses 5 must be detected. Since the results of measurement are passed directly to the machine control means, by making a comparison it can be established whether in fact five contact lenses 5 have been counted. Thus, it is not necessary to incorporate series of stoppers or other synchronisation measures. Of course it is also possible to design the checking system independently of a strip consisting of five blister packages, and to undertake individual detection and recordal. [0018] The measuring process according to the invention is not an imaging process, since no image is made of the moulding to be examined. Instead, what is detected is a local temperature measurement. [0018] [0019] In addition, ventilators not illustrated here are advantageously arranged over the five production lines between the lens deposit station and the IR camera. These enable the air exchange to be higher. In this way, the evaporation of water on the contact lenses is increased, so that there is increased cooling of the contact lenses. This leads to an improved signal-noise ratio. [0019] [0020] Moreover, there may advantageously be a provision for the container detected as being empty to be automatically removed from the packaging appliance. The following tests carried out by way of example were effected using a detection set-up according to FIG. 1: [0020] [0021] Test 1: Production of empty packages randomly distributed. [0021] [0022] Approximately 50% empty packages were produced. These had not yet been filled with preserving solution. The empty packages were randomly distributed among the tool holders. An evaluation was made by making a comparison between a manual inspection and the results of the contact lenses detected by the IR camera. [0022] [0023] Test Results: [0023] IR camera manual inspection consistency CL present 240 240 CL not present 180 180 total 420 420 420 100% [0024] The test shows that the presence of contact lenses is detected at a rate of 100% by the IR camera. There was not a single case in which the camera had not noticed the absence of a lens. The IR camera thus enables fault-free detection to be made of contact lenses in a package. [0024] [0025] Test 2: Empty packages with the addition of a defined amount of water [0025] [0026] In this test, all packs contained no contact lenses. In addition, a defined amount of water was added to one of the containers in a series of five. The amount of water was 50 μl for the first 50 tool holders and 100 μl for the last 34 tool holders. The aim of this test was to investigate the influence of possible water spillages on the results of measurement. An evaluation was again made by making a comparison between a manual inspection and the results of the contact lenses detected by the IR camera. [0026] [0027] Test Results: [0027] IR camera manual inspection consistency CL present 0 0 CL not present 420 420 total 420 420 420 100% [0028] The test shows that the detection system also operates in a trouble-free manner after the addition of water and accurately detects the absence of contact lenses. [0028] [0029] In all, the invention offers the possibility of checking in a simple manner the presence of mouldings, especially ophthalmic lenses, particularly contact lenses, in a package which can be either open or closed and contains no preserving solution. Owing to the high repeat rate of measurements, the camera can be operated continuously. [0029]
权利要求:
Claims (13) [1" id="US-20010009561-A1-CLM-00001] 1. Method for detecting mouldings consisting of a biocompatible polymeric material, especially ophthalmic lenses, particularly contact lenses, in a blister package, whereby the package is open, characterised in that the temperature of a package with a moulding is measured and compared with the temperature measurement of a package without a moulding, the difference between the two measurements being used to detect a moulding. [2" id="US-20010009561-A1-CLM-00002] 2. Method according to claim 1 , in which local temperature measurement takes place. [3" id="US-20010009561-A1-CLM-00003] 3. Method according to claim 1 or 2 , in which an infrared line camera is used to detect the temperature. [4" id="US-20010009561-A1-CLM-00004] 4. Method according to one or more of claims 1 to 3 , in which the package is divided into at least two zones, the local temperature distribution is measured and they are compared, whereby one zone contains the moulding and the other zone does not. [5" id="US-20010009561-A1-CLM-00005] 5. Method according to one or more of claims 1 to 4 , in which the temperature distribution of several packages is measured simultaneously. [6" id="US-20010009561-A1-CLM-00006] 6. Method according to one or more of claims 3 to 5 , in which an infrared line camera with a resolution of 0.5 to 0.1 K is used. [7" id="US-20010009561-A1-CLM-00007] 7. Method according to claim 6 , in which an infrared line camera with a resolution of 0.2 K is used. [8" id="US-20010009561-A1-CLM-00008] 8. Method according to one of claims 2 to 7 , in which a sensor is used to detect when a package enters and/or leaves the measuring area of the infrared line camera. [9" id="US-20010009561-A1-CLM-00009] 9. Method according to one or more of claims 1 to 8 , in which ventilators are used over the package to increase air exchange over the package prior to the IR detection. [10" id="US-20010009561-A1-CLM-00010] 10. Method according to one or more of claims 1 to 9 , in which the moulding is a contact lens. [11" id="US-20010009561-A1-CLM-00011] 11. Apparatus for detecting mouldings consisting of a biocompatible polymeric material, especially ophthalmic lenses, particularly contact lenses consisting of a biocompatible polymeric material, in a blister package, whereby the package is open, characterised by an infrared line camera for recording the temperature, a sensor for detecting when a blister package enters and/or leaves the measuring area of the IR line camera, and an electronic evaluation means, whereby the package is divided into at least two zones, the local temperature distribution is measured and they are compared, and whereby one zone contains the moulding and the other zone does not. [12" id="US-20010009561-A1-CLM-00012] 12. Apparatus according to claim 11 , in which the IR line camera has a resolution of 0.5 to 0.1 K. [13" id="US-20010009561-A1-CLM-00013] 13. Apparatus according to claim 12 , in which the IR line camera has a resolution of 0.2 K.
类似技术:
公开号 | 公开日 | 专利标题 EP1973782B1|2009-12-23|Method and apparatus for detecting presence of an ophthalmic lens in a package US6471396B2|2002-10-29|Method and apparatus for detecting the presence of a moulding in an open blister package based on sensed temperature differences US6575016B2|2003-06-10|Method for leak testing and leak testing apparatus CA2648041C|2012-04-17|Method and apparatus for leak testing EP0793569B1|2002-05-29|Bottle inspection along molder transport path CA2421444C|2015-02-03|Method and apparatus for monitoring wall thickness of blow-molded plastic containers US20160258880A1|2016-09-08|Inspection of sealing quality in blister packages US6167751B1|2001-01-02|Leak analysis EP1733212A1|2006-12-20|Inspection system for blister packages US6838679B2|2005-01-04|Missing lens detection system and method DE60316473T2|2008-06-26|PROCESS FOR THE PRODUCTION OF CONTACT LENSES EP1109011B1|2009-09-02|Method for detecting the presence of mouldings in a package DE102016006149B4|2019-12-05|injection molding WO2004036200A1|2004-04-29|Method and apparatus for quality inspection US6470733B1|2002-10-29|Automatic testing of package content and integrity JPH10254536A|1998-09-25|Production line management system US20110031170A1|2011-02-10|Vision means for quality increase of confectionary US20020125436A1|2002-09-12|Detection of ophthalmic mouldings in a package AU2003252204B2|2005-03-17|Method and Apparatus for Leak Testing JPH1016926A|1998-01-20|Method and device for pinhole detection on packaging film for food package WO2019162933A1|2019-08-29|Methods and systems for thermal imaging of moving objects AU759192B2|2003-04-10|Method and apparatus for leak testing KR20140073647A|2014-06-17|Vision strip inspector and it's inspecting method GB2299865A|1996-10-16|Leak testing containers formed on blow moulding machine JPH10244584A|1998-09-14|Failure data processing system
同族专利:
公开号 | 公开日 DE60042873D1|2009-10-15| US6471396B2|2002-10-29| AT441852T|2009-09-15| JP2001208860A|2001-08-03|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20050226488A1|2004-03-31|2005-10-13|Paud Barry|Inspection system for blister packages| ITMI20130870A1|2013-05-29|2014-11-30|Menci Software S R L|PROCEDURE AND PACKAGING DEVICE FOR REBUILT OBJECTS|DE2638138C3|1976-08-25|1979-05-03|Kloeckner-Werke Ag, 4100 Duisburg|Device for recognizing and sorting out defective packs that are transported along a conveyor line| IT1201779B|1986-07-09|1989-02-02|Zanussi Zeltron Inst|THERMAL INSULATION CONTROL DEVICE FOR HOUSEHOLD APPLIANCES, IN PARTICULAR REFRIGERATORS| JPH0583134B2|1987-02-04|1993-11-24|Nippon Electron Optics Lab|| FR2651322A1|1989-08-30|1991-03-01|Inst Textile De France|Method and installation for detecting foreign bodies made of synthetic material present in a lap of natural fibres| JPH0812162B2|1992-04-20|1996-02-07|川崎重工業株式会社|Method for detecting water content in honeycomb structure| DE4331772C2|1993-09-18|1997-09-04|Laetus Am Sandberg Geraetebau|Device for color detection of objects lying in blister films| US5555707A|1994-02-18|1996-09-17|Schwenger; Hans O.|Blister pack scanner device| US5568715A|1994-05-31|1996-10-29|Johnson & Johnson Vision Products, Inc.|Automated inspection system with transport and ejector conveyor| GB9503274D0|1995-02-21|1995-04-12|Sun Electric Uk Ltd|Method and apparatus for machine diagnosis| GB2309077B|1996-01-11|1998-10-07|Nitto Chemical Industry Co Ltd|Method of detecting defects of structure| US5823677A|1996-03-18|1998-10-20|The Board Of Trustees Of Western Michigan|Method of identifying a substance by infrared imaging| DE19617014C2|1996-04-27|1998-04-09|Uhlmann Pac Systeme Gmbh & Co|Method and device for refilling filling material in the wells of a film web| DE19629101A1|1996-07-19|1998-01-22|Barnickel Wolfgang|Contactless identification unit for inspection and checking of packages and contents| US5775806A|1996-09-12|1998-07-07|The United States Of America As Represented By The Secretary Of The Air Force|Infrared assessment system| US6124594A|1998-09-11|2000-09-26|Bausch & Lomb Incorporated|Method and apparatus for detecting contact lenses| US6246062B1|1998-11-05|2001-06-12|Johnson & Johnson Vision Care, Inc.|Missing lens detection system and method| DE29822017U1|1998-12-11|1999-03-25|Retec Elektronische Regeltechn|Glue application meter|US6851808B2|2001-11-16|2005-02-08|Gregory L. Heacock|Disposable Ophthalmic lens| US20080111074A1|2004-10-22|2008-05-15|Northrop Grumman Corporation|Method for infrared imaging of substrates through coatings| US7164146B2|2004-10-22|2007-01-16|Northrop Grumman Corporation|System for detecting structural defects and features utilizing blackbody self-illumination| US7462809B2|2004-10-22|2008-12-09|Northrop Grumman Corporation|Spectral filter system for infrared imaging of substrates through coatings| US7438411B2|2005-05-07|2008-10-21|Nanospectra Biosciences, Inc.|Plasmon resonant based eye protection| US7990531B2|2008-06-05|2011-08-02|Coopervision International Holding Company, Lp|Multi-imaging automated inspection methods and systems for wet ophthalmic lenses| JP5817072B2|2013-07-04|2015-11-18|礼之 井上|Inspection method of contents of packaging container|
法律状态:
2002-10-10| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2006-04-06| FPAY| Fee payment|Year of fee payment: 4 | 2010-04-21| FPAY| Fee payment|Year of fee payment: 8 | 2014-04-02| FPAY| Fee payment|Year of fee payment: 12 | 2014-11-03| AS| Assignment|Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIEL, ROGER;REEL/FRAME:034092/0392 Effective date: 20000922 | 2019-12-10| AS| Assignment|Owner name: ALCON INC., SWITZERLAND Free format text: CONFIRMATORY DEED OF ASSIGNMENT EFFECTIVE APRIL 8, 2019;ASSIGNOR:NOVARTIS AG;REEL/FRAME:051454/0788 Effective date: 20191111 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 DE99124220.7||1999-12-03|| DE99124220||1999-12-03|| EP99124220||1999-12-03|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|